反证法的理论依据是逆否命题吗?
文卫星,上海市特级教师。践行“生态课堂”,做到“两尊重”----即尊重知识的发生、发展规律,尊重学生的认知规律;把握“两个度”----思想(哲学或数学)高度和文化厚度。
在《数学教育学报》《数学通报》《中学数学教学参考》等近50家报刊杂志发表论文或文章约330多篇。
专著(代表作):《超越逻辑的数学教学----数学教学中的德育》(2009)、《文卫星数学课赏析》(2012)、《挑战高考压轴题
近年为北京、上海、天津、江苏、浙江、福建、广东、贵州、河南、河北、四川、云南、新疆、宁夏、安徽、山西、重庆等地师生讲学。
欢迎朋友们来稿!来稿请注明真实姓名、工作单位和联系方式。特别欢迎原创文章。只接受word版式的电子稿,文责自负。投稿邮箱:wwxwxh@163.com
1 反证法的理论依据是逆否命题吗?
“反证法”与“逆否命题”是数学家族中的一对好兄弟,但最近两人为了一个问题,引起了争端。究竟是什么回事呢?
原来,“逆否命题”发现“反证法”往往利用自己来证明一些结论,所以认为反证法的实质就是证明一个命题的逆否命题。而“反证法”并不认帐。两人找来“逻辑”与“推理”两位法官主持公道。
“逆否命题”说:“反证法是间接证法中的一种,从命题的角度来看,由于原命题与它的逆否命题具有相同的真假性,所以反证法的证明思路是证明原命题的逆否命题成立。”
还没等“反证法”说完,“逆否命题”就打断了他的话:“两位法官听听,“反证法”现在已经承认了。”
“反证法”笑着说:“别急,我还没说完呢。我的理论基础是互为命题的等价性,但是我们证明的思路并不完全是证明一个命题的逆否命题。”
法官“逻辑”说:你说来听听。
“反证法”说:“从逻辑形式上来说,反证法的理论依据在于矛盾律和排中律(矛盾律:对于同一事物的两个矛盾的判断不能同时为真,其中至少有一个是假的;排中律:对于同一事物的肯定判断与否定判断不能同时进行);其矛盾的种类可以有:与题设矛盾,与假设矛盾,与定义、定理、公理、公式矛盾或自相矛盾等等。由此可知,反证法证明的思路是只要找到矛盾即可,不一定是与题设矛盾。这说明,反证法与证明逆否命题是不一样的。”
“逻辑”与“推理”两位听完之后,点了点头,赞许地说:“你说的非常正确,还有其他理由吗?”
在事实面前,“逆否命题”也不得不认真反思自己的想法,思考了一会,说:“我只是看到了反证法的外在形式,而没有深入思考他的逻辑基础。我错了。”
两位法官听完后,真诚地对“逆否命题”说:“是的,我们不应该只看事物的外在形式,更要深入研究它的实质。反证法与证逆否命题是不同的.由于受“反证法就是证逆否命题”的错误影响,在否定结论后的推理过程中,往往一味寻求与原题设的矛盾,而不注意寻求其他形式的矛盾,这样就大大限制和影响了解题思路.”
“推理”说:“反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中以常用到,它所反映出的“正难则反”的解决问题的思想方法更为重要,反证法是一种逆向思维的一种推理方式,它常可将肯定正面转化为否定反面,由反面的否定得出正面的肯定,从而避开直接肯定正面的障碍,正因为如此,反证法往往可以完成直接证明难以完成的工作。从2009年的高考开始已经把反证法纳入高考的范畴,所以我们一定要认真学习。”
https://wenku.baidu.com/browse/downloadrec?doc_id=9a737cc684868762caaed55c&wp=1
2 解读反证法的逻辑基础
扫描二维码,关注公众号“文卫星数学生态课堂”
往期推荐
杨永清:问题预设孕生成 悟化深学润素养 ——以“方程的根与函数的零点”教学为例
吕增锋:构建“平面向量”与“正弦、余弦定理”多重联系 ——由最新版人教高中数学教材引发的思考
文卫星:新教材必修一每课讲与练 第三讲 集合的运算(训练篇)A
文卫星:新教材必修1 每课讲与练 第3解集合的运算(精讲篇)
2020年杭州市初中数学课堂教学展示评审活动优秀课例展示(十七)
2020年杭州市初中数学课堂教学展示评审活动优秀课例展示(十九)
文卫星:新教材必修1 每课讲与练 第2讲集合的关系(精讲篇)
王小国:基于结构、合理联想构造——致王芝平老师公众号的两道题
王芝平:数学解题要本质、自然、规范、简单 ——数学通报第2548问题的一个新解法
文卫星:新教材必修1 每课讲与练 第1讲 集合的概念(精讲篇下)
文卫星:新教材必修1 每课讲与练 第1讲 集合的概念(精讲篇上)
李昌官:素养为本的高中数学单元起始课教学 ——兼谈“平面向量及其应用”单元起始课教学
李昌官:素养为本的高中数学单元起始课教学 ——兼谈“平面向量及其应用”单元起始课教学
王怀学、翟洪亮:基于数学核心素养下科学预设与精准教学实践的思考
吕增锋:集体备课的核心:理解教材 ——以“平面向量的实际背景及基本概念”为例
更多内容请查看公众号菜单栏!